"TEMPERATURE FIELDS IN SWELLING MATERIALS
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A method is outlined for calculating the nonsteady temperature fields in polymer materials
swelling on heating and passing through a plastic state in the region of thermal decomposi-
tion.

With the action of heat on polymer materials (PM) at a definite pressure of the surrounding medium, the
phenomenon of swelling is observed. The reason for this is the presence of a plastic (viscofluid) state and gas
liberation in the region of thermal decomposition of the PM. The pressure of the gaseous products of thermal
decomposition leads to extension of the plastic body of the porous decomposition region. On account of the
swelling, the femperature field in the material is distorted, and its heating depth is reduced. Similar phenom-
ena are observed in the heating of certain materials used in fireproofing (systems based on foaming paint and
varnish coatings).

The results of investigating {1] temperature fields in PM in the presence of zones of reacting material
and pyrolysis of the initial material, and when the dependence of the thermophysical characteristics on the
temperature and porosity is taken into account, are known. PM deformation (on account of swelling) and the
associated significant (as shown below) changes in the nonmechanical parameters have not previously been
considered.

The mathematical model of the nonsteady heating of a swelling PM together with the traditional conserva-
tion equations for the energy, mass of the material, motion, diffusion, and the equation of state of the gaseous
thermal-decomposition products [2], includes the equations of polymer mechanics: the equation of motion of the
body of the porous region of thermal decomposition, and geometric and physical equations (rheological equa-
tions of state). The system of equations for calculating the temperature fields in swelling PM is obtained un-
der the following assumptions.

1. Heat and mass transfer along the working (heated) surface of the material is negligibly small in com-
parison with transfer in the perpendicular direction.

2. Deformation of the body of the porous plastic region is one-dimensional.
3. Motion of the body and the volatiles in the pores is quasisteady.
4. Diffusional mass flows are negligibly small in comparison with the convective flows.

The basis for assumption 1 is that, in the great majority of cases that are of practical importance, the
gradients of the heat and mass fluxes along the surface of the material are negligibly small in comparison with
the transverse fluxes. Assumption 2 is correct in view of the small thickness of the plastic region (fractions
of a mm) in comparisaon with its extent in the plane parallel to the working surface of the material. Assump-
tions 3 and 4 are confirmed by numerical estimates of the order of magnitude of the corresponding terms in
the equations of motion and diffusion. Taking account of these assumptions, the system takes the form
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The energy-conservation equation is writfen in a coordinate system associated with the current position of the
PM working surface. Radiant heat transfer in the pores is taken approximately into account by introducing
the corresponding components in the effective thermal conductivity: Asx =AX21 — ) + QI+ » (1 + &)TH 1,
while the influence of secondary chemical reactions is taken into account by including thermal effects in the
total @s;) thermal effect of the physicochemical processes.

In order to solve the system in Eqs. (1)-(14), it is necessary to add a closing relation for the porosity,
gas permeability, and degree of completion of pyrolysis. The formula for the porosity is obtained from the
mass-conservation law of an elementary volume of material, taking account of its deformation on swelling
and the change in dengity of the body
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The following expression is used for the mathematical approximation of the kinetics of pyrolysis

0, T Tgp,
L= AEarCtg Imf( (T”“ Tm)] ”{‘ Bk» 7i3D< T< ED,
5 T 2 Tip.

1055



The gas permeability is calculated from the modified Kozeny— Carmen formula k = ky(kaIl)? /(1 — koII)?,
in which k¢ is the clearance coefficient determining the proportion of open, communicating pores in the total
porosity I (0 = kg =< 1). On the basis of the decomposition mechanism of the swelling materials on heating, it
may be concluded that the clearance coefficient depends on the degree of cracking of the heated layer, which is
associated with the pressure of the surrounding medium and the stress ¢ acting in the plane parallel to the
working surface. This dependence may be approximated by the following expression
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where ko, ¥, and N are empirical coefficients. According to this expression, the clearance coefficient is
small in the plastic region, and increases sharply on passing to the carbonized layer.

The problem may be significantly simplified if the following scheme of change in clearance coefficient is
adopted: discontinuous growth at the boundary y =ygp with temperature T p from zero values in the plastic
region to values close to unity in the carbonized layer (Fig. 1a). This schematization corresponds to the case
of totally closed pores in the plastic region and pronounced cracking of the carbonized layer. The need to
determine the gas permeability of the heated layer vanishes in this case.

In addition, with sufficient accuracy for practical purposes, the velocity of motion of the body on swelling
may be regarded as hegligibly small in comparison with the flow velocity of the volatile pyrolysis products.
Taking this into account, the formula for the pressure in the plastic region may be obtained on the basis of the
equation of mass conservation, Eq. (2), and the equation of state of the pyrolytic gases, Eq. (4), in the following
form
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An expression for the mass velocity of the pyrolytic gases may be found by integrating the equation of
mass conservation with respect to the coordinate from the boundary of the plastic region to the surface of the
material; taking account of the opening of closed pores of the plastic region as the boundary moves at the ve~
locity ygp =dygp/dt
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In this case, the rate of displacement of the isotherm T = Tgp is determined from the obvious relation
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An expression for the pressure when yg=y = YEP is obtained on integrating Eq. (3) and taking Eq. (4)
into account
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The formula for the stress arising in the body of the plastic region under the action of the pressure dif-
ference is obtained from Eds. (3) and (5), taking account of the smallness of the mass force oy = [p— pe) .
(1 =1m)~t. Using the expression for p in terms of P, (T}, oy is obtained in the form ~
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Invariance principles, questions of the correctness of the given model, etc., are considered in accord-
ance with the hypotheses of [2, 3].
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Fig. 1. Calculation scheme (a) and dependence of the sur-
face temperature, coke-layer thickness A, and destruction
depth & on the heating time (b): a) CL, carbonized layer;
DR, PR, decomposition region, plasticity region; UM, un~
decomposed material; 1, initial position of PM surface; 2,
its position when vehl = ¢; b) experimental data for the sur-
face temperature (1), coked-layer thickness (2), and de-
struction depth (3) obtained in an oxygen—acetylene torch
for a resinous PM based on phenol-formaldehyde binder

at atmospheric pressure, under the conditions: Te =
2700°K; o ~ 500 W/m? . °K; T = 290°K; Lyo = 0.8 - 1072 m,
Tg, °K; 4, 6, mm; ¢, sec,

The nonlinear system in Egs. (1)~(14) is solved numerically by computer by a procedure analogous to [4],
including an implicit four-point conservative difference scheme for continuous calculation of the "canopy,"
the simplest difference analogos of Egs. (9) and (10) in combination with grid densification close to the bound-
aries, the organization of the iterative process in each time layer with linearization of Eqs. (9) and (10) (isola-
tion of a "cube™ at Tg in the radiative component), and averaging of the iterations. By these means it was pos-
sible not only to eliminate the difficulties arising on approximating boundary conditions of the third kind (es-~
pecially in the presence of radiant heat transfer) with second-order accuracy by the methed of [5] and the as-
sociated appearance of a minus sign in the fitting coefficients at d) /dt < 0, but also to ensure the same order
of accuracy of the approximation and to reduce the number of iterations.

The computational algorithms for determining the position of the moving boundaries of the plasticity and
decomposition regions, the external PM boundaries on swelling, and the chemical (surface) mass loss are con-
structed on the basis of the theory of [6]. The calculation of the motion of the external boundaries of the deformed
material is based on the determination of I at i grid points and its transformation according to the scheme
hyy =h{f™1 + 1V, leading to displacement of the boundaries through a distance
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n, j =1, 2, ... are the numbers of time layers and iterations; i =1, 2, ... ; ygp =y =ypp- The position of the
boundaries of the regions of internal decomposition and plasticity is determined from the temperature profile
in the PM and the isotherms (T =Tpgp, TBp> TEp, TEp) by explicit derivation of the boundaries of interpola-
tion. The motion of the external PM boundaries with chemical entrainment is calculated by the method of [6].
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Fig. 2. Distribution of the temperature, porosity, and
relative deformation over the PM thickness and time:
1) DR; 2) PR. T, K; £, mm.

The thermophysical and thermochemical characteristics of the materials required for numerical cal-
culations are determined as a result of special experimental investigations. The values of p, o, Alare
obtained on completely coked samples ground to a powder. The thermal conductivity, specific heat, and vis-
cosity A 1L cg, p I of the volatiles are calculated from their composition; the kinetic parameters my, Ty, A},
Bk K of thermal decomposition are determined from thermogravimetric curves by solving the identification
problem. The thermal effect of thermal decomposition is calculated in accordance with the Hess law from the
heat of formation of the initial material and its decomposition products. The rheological parameters of ma-
terials in the plastic zone are found from the creep curves.

A series of parametric calculations have been performed on an ES-1055 computer for a two-layer plate,
with the first layer (s = 1) swelling, using the characteristics obtained and a Fortran program developed on
the basis of the computational algorithms and principles of construction of applied programs of packet [4]; the
basic results are shown in Figs. 2-4.

Comparison of experimental data and the results of calculation (Fig. 1b) indicates that they are in good
agreement (the maximum discrepancy obtained for A is no more than 15%)), which, like the convergence of
difference solutions established by the method of [6], confirms not only that the assumptions adopted in solving
the problem are correct but also that the computational algorithm developed is reliable.

The distribution of the temperature, the porosity, and the relative deformation of the material over the
thickness of the swelling PM at various times is shown in Fig. 2. I follows from an analysis of the curves, in
particular, that the relative deformation has a maximum at the boundary of the plastic region with temperature
Tgp ahd the porosity has a maximum at the boundary between the decomposition region and the carbonized
layer; their maximum values increase with time, The temperature profile in the plasticity region is deformed
(straightened) on account of swelling of the plastic-region body in the direction of the PM working surface and
decrease in the heat conduction as a result of the increase in porosity.

The temperature T(Lg =) at the boundary between the first and second layers in the presence of swelling
and surface entrainment of the PM mass decreases from 628°K (without swelling) to ~580°K (t = 30 sec), i.e.,
by ~50°K. As a resulf of the calculations, it is established that this difference in T(L,) increases approximate-
ly threefold with 50% decrease in M: T(L,) =490°K. In the absence of entrainment, T(L,) =320°K, i.e., swell-
ing of the PM, leading to "blocking" of the heat-propagation process (on account of increase in II), reduces
T(Ly by half (or more, depending on the intensity of swelling).

Thus, swelling leads to significant increase in porosity close to the internal boundary of the carbonized
layer and reduction in temperature at the boundary between the layers.
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Fig. 3. Change in porosity, destruction depth, and relative deforma-
tion over time, with various heat-transfer conditions: 1) v,=200 m -
sec™!, o = 500 W/m? . °K; 2) 100, 289; 3) 10, 46.

Fig. 4. Dependence of the surface temperature, destruction depth &,
and PM coordinate yg on the time, molecular weight of the volatile
components, pressure, and surface entrainment of mass: 1) M =100;
2) 50 kg/mole; 3) calculation in the absence of swelling; p, = 0.1 MPa,
b =0.23; 4) pe =0.1; 5) 4 MPa; M =100 kg /mole; GCR =0 (no entrain-
ment). Ts, °K; 6, yg, mm; t, sec.

The dependence of the destruction depth (up to 573°K), maximum porosity, and relative deformation on
the heating time, velocity of the external flux, and convective heat-transfer coefficient are shown in Fig. 3.
With increase in flux velocity, the heat-transfer coefficient and value of II increase, while ey decreases (curves
1, 2) on account of more rapid progress of the front y =ypp (or increase in the destruction depth &) with in~
crease inw (curves 1-3 for §). With completion of the process of PM destruction, the calculation stops.

The influence of swelling, chemical entrainment, and pressure in the external gas flow on the PM sur-
face temperature, its destruction depth, and the coordinate yg of the PM working surface (relative to its ini-
tial position) is shownin Fig. 4. Pressure leads to reduction in intensity of swelling, Whereas the sample size
(Ly) increases by approximately 125% by the 60th second at pg = 0.1 MPa (curve 4 for yg), the increase in the
thickness at p, =4 MPa is no more than 80% (curve 5). With increase in pressure and molecular weight of the
gaseous thermal-decomposition products, and in the presence of surface entrainment of mass, the "blocking"
of heat on swelling is reduced (the porosity is decreased). As a result, there is a decrease in PM surface tem-
perature, and & increases (curves 1, 2, 4, 5 for Tg and 6).

It is evident from Fig. 4 that, with the chosen heating conditions, swelling decreases the destruction depth
of the material to 25% (curves 1-3).

The present investigations show that swelling must be taken into account in calculating the temperature
fields in PM, since they lead to change in character of the heat propagation in the material and, as a conse-
quence, to considerable decrease in heating depth.

NOTATION

t, £,y, L, time , transverse coordinates associated with the current and initial positions of the PM sur-
face, and thickness; T, temperature; I, enthalpy; p, pressure; v, velocity; G, mass velocity; «, sound velocity;
as 7, Aef, coefficients of heat transfer, injection, and radiational properties; A, Cps P> thermal conductivity,
specific heat, and density; Q, thermal effect; K, coke number; mg, 7y, mass fraction of filler in the initial
material and chemicomechanical crumbling of coke residue defined according to [2]; b, oxidative potential; y,
degree of thermal decomposition; M, u, molecular weight and viscosity of pyrolytic gases; R, universal gas
constant; II, porosity; k, ko, permeability and clearance coefficient; F, mass force; o, stress; Eys €5 relative
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and bulk deformation; I, displacement; Ag, By, kinetic parameters of deformation; ¢', Stefan—Boltzmann co-
efficient; », empirical coefficient; h, 7, difference-grid steps over the coordinate and time. Indices: 0, ini-
tial; e, external gas flow; S, surface; ch, chemical entrainment; I, condensed phase (body); IL, gas phase in
material; s, layer number; Z, total; BD, m, ED, beginning, maximum, and end of decomposition; BP, EP, be-
ginning and end of plastic state.
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VARIATIONAL ESTIMATE OF THE EFFECTIVE GENERALIZED
CONDUCTIVITY TENSOR OF A TWO-PHASE MEDIUM WITH AN
ANISOTROPIC DISTRIBUTION OF PHASES

V. P. Kazantsev UDC 536.24

An inequality is found for the effective generalized conductivity tensor of a two-phase medium
with an anisotropic distribution of phases.

There are a large number of calculations of the effective generalized conductivity of a two~phase in-
homogeneous medium; see for example [1-3]. The idea of a generalized conductivity derives from a local
coupling of two vectors fields (denoted by E and j) by a linear relation with the proportionality factor dependent
on the material characteristics. In the absence of sources, one of the fields will be potential, and the other
solenoidal, and the equations for the spatial distribution of fields will be given by

1ot E = 0; divj = 0; j = AE, oy

where the generalized conductivity will in general be a tensor of the second rank, In the present paper we con-
sider the case of a scalar A > 0 which is more often encountered in practice.

The set of equations (1) describes processes of heat conduction, diffusion, electrical conduction and also
the electric field distribution in a dielectric and the magnetic field in a material with the magnetic permeabil-
ity differing from unity. In the particular case of heat conduction, E is the temperature gradient and j is the
heat flux; then A will be the thermal conductivity.

Various methods have been used to calculate the effective conductivity. The variational method has been
used in only a relatively few cases, as can be seen in the reviews [1-3]. However, variational methods have
several advantages which show congiderable promise. For example we show that the variational inequalify
obtained here yields not only an approximate effective generalized conductivity but also allows calculation of
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